Algebra in 15 Minutes a Day by LearningExpress LLC Editors

By LearningExpress LLC Editors

You do not have to be a genius to turn into an algebra ace-you can do it in precisely quarter-hour an afternoon jam-packed with brief and snappy classes, Junior ability developers: Algebra in quarter-hour an afternoon makes studying algebra effortless. it truly is real: making experience of algebra does not need to take many years . . . and it does not need to be tricky! in precisely one month, scholars can achieve services and straightforwardness in the entire algebra suggestions that regularly stump scholars. How? every one lesson supplies one small a part of the larger algebra challenge, in order that each day scholars construct upon what was once discovered the day prior to. enjoyable factoids, catchy reminiscence hooks, and beneficial shortcuts ensure that each one algebra idea turns into ingrained. With Junior ability developers: Algebra in quarter-hour an afternoon, sooner than you recognize it, a suffering pupil turns into an algebra pro-one step at a time. in precisely quarter-hour an afternoon, scholars grasp either pre-algebra and algebra, together with: Fractions, multiplication, department, and different simple math Translating phrases into variable expressions Linear equations actual numbers Numerical coefficients Inequalities and absolute values platforms of linear equations Powers, exponents, and polynomials Quadratic equations and factoring Rational numbers and proportions and masses extra! in exactly quarter-hour an afternoon, scholars grasp either pre-algebra and algebra, together with: Fractions, multiplication, department, and different simple math Translating phrases into variable expressions Linear equations genuine numbers Numerical coefficients Inequalities and absolute values structures of linear equations Powers, exponents, and polynomials Quadratic equations and factoring Rational numbers and proportions and lots more and plenty extra! as well as the entire crucial perform that children have to ace school room assessments, pop quizzes, category participation, and standardized checks, Junior ability developers: Algebra in quarter-hour an afternoon presents mom and dad with a simple and available technique to support their youngsters exce

Show description

Read or Download Algebra in 15 Minutes a Day PDF

Best elementary books

Mathématiques, Classe de Troisième

Manuel conforme aux programmes du 31 juillet 1958 pour l. a. classe de troisième.

Table des matières :

Chapitre I. — Racine carrée
    I. Carrés
    II. Carrés parfaits
    III. Racine carrée à une unité près
    IV. Racine carrée à 1/10ⁿ près
    V. Calculs avec des radicaux
    Exercices et problèmes

Chapitre II. — Rapports et proportions
    I. Rapports
    II. Proportions
    Exercices et problèmes

Chapitre III. — Calcul algébrique
    I. Expressions algébriques (revision)
    II. Monômes (revision)
    III. Polynomes (revision)
    IV. Identités
    V. Fractions rationnelles
    Exercices et problèmes

Chapitre IV. — Théorème de Thalès
    I. Parallèles équidistantes
    II. Théorème de Thalès
    III. purposes au triangle et au trapèze
    Exercices de revision de géométrie portant sur le cours de 4ᵉ
    Exercices et problèmes

Chapitre V. — Coordonnées
    I. Repérage d’un element dans le plan
    II. Représentations graphiques
    Exercices et problèmes

Chapitre VI. — Fonction y = ax + b
    I. Fonction y = ax
    II. Fonction y = ax + b
    III. Mouvement rectiligne uniforme
    Exercices et problèmes

Chapitre VII. — Équations du most efficient degré à une inconnue
    I. Équations entières
    II. Équation du ideal degré à une inconnue
    III. Exemples d’autres équations
    Exercices et problèmes

Chapitre VIII. — Inéquations du leading degré à une inconnue
    I. Inéquations entières
    II. Inéquation du most appropriate degré à une inconnue
    III. Exemples d’autres inéquations
    Exercices et problèmes

Chapitre IX. — Systèmes d’équations du foremost degré
    I. Une équation à deux inconnues
    II. Systèmes de deux équations à deux inconnues
    III. Calculs particuliers
    Exercices et problèmes

Chapitre X. — Problèmes du most advantageous degré
    I. Problèmes du finest degré à une inconnue
    II. Problèmes à deux inconnues
    Exercices et problèmes

Chapitre XI. — Triangles semblables
    I. Triangles semblables
    II. Cas de similitude
    III. Puissance d’un element par rapport à un cercle
    Exercices et problèmes

Chapitre XII. — Projections orthogonales
    I. relatives métriques dans le triangle rectangle
    II. Rapports trigonométriques d’un perspective aigu
    Exercices et problèmes

Chapitre XIII. — Droite et plan
    I. Plan
    II. Droites et plans parallèles
    III. Plans parallèles
    Exercices et problèmes

Chapitre XIV. — Droites et plans perpendiculaires
    I. attitude de deux droites
    II. Droites et plans perpendiculaires
    III. Angles dièdres. Plans perpendiculaires
    Exercices et problèmes

Chapitre XV. — Projections. Vecteurs
    I. Projections orthogonales sur un plan
    II. Vecteurs
    Exercices et problèmes
    Exercices de représentation

Chapitre XVI. — Astronomie
    I. Repérage des astres
    II. Éclipses
    III. Dimensions et distances des astres

Extra resources for Algebra in 15 Minutes a Day

Sample text

2. What is 12n – 8n + 7 when n = 9? 3. What is 2r2 + 3r2 when r = –3? 4. What is 4h – 8h + 6(h + 2) when h = 4? 5. What is 5s + s2 – 9 when s = –2? qxd:JSB 52 12/18/08 11:45 AM Page 52 algebra basics ANSWERS Practice 1 1. This expression contains subtraction and division. Since division comes before subtraction in the order of operations, divide first: 6 ÷ 2 = 3. The expression becomes 5 – 3. Subtract: 5 – 3 = 2. 2. Parentheses are first in the order of operations. 10 + 3 = 13, and the expression becomes –2(13).

Replace x in the expression 6x with 4: 6(4) = 24. When x = 4, 6x = 24. But what if x = –10? Then we would replace x with –10: 6(–10) = –60. The value of 6x varies depending on the value of x. This is why x is called a variable! Example What is –5p + 9 when p = –1? Replace p with –1: –5(–1) + 9. Remember the order of operations: Multiply before adding. –5(–1) = 5, 5 + 9 = 14. When p = –1, –5p + 9 is equal to 14. Example What is 4(c2 – 7) when c = –3? qxd:JSB 50 12/18/08 11:45 AM Page 50 algebra basics Replace c with –3: 4((–3)2 – 7).

Finally, subtract: 20 – 16 = 4. The expression 2(6 + 4) – 42 is equal to 4. TIP: If there is more than one operation inside a set of parentheses, use the order of operations to tell you which operation to perform first. In the expression (5 + 4(3)) – 2, addition and multiplication are both inside parentheses. Because multiplication comes before addition in the order of operations, we begin by multiplying 4 and 3. qxd:JSB 12/18/08 11:45 AM Page 49 single-variable expressions 49 Practice 1 Evaluate each expression.

Download PDF sample

Rated 4.06 of 5 – based on 8 votes